讲座内容简介:
In two papers by C. Liu et (Science, 2011) and Fu et al. (Phys. Rev. Lett. 2012), a new argument driving spatio-temporal pattern formation by density suppressed motility through self-trapping was proposed and verified by a mathematical model. In this talk, we shall report some results on the density-suppressed motility model proposed therein. The main challenge arising in this model is the possible degeneracy of diffusion. In our work, we shall use the motility function as a weight function and employ the weighted energy estimates to get the boundedness of solutions and hence rule out the possible degeneracy to obtain the existence of global classical solutions. We also discuss the large-time behavior of solutions and pattern formations with numerical simulations. This is a joint work with Haiyang Jin (South China University of Technology) and Yong-Jung Kim (KAIST).
讲座人简介:
王治安教授1998年毕业于华中师范大学;2001年在华中师范大学获得硕士学位;2007年在加拿大Alberta大学获得博士学位。2007-2009年在美国Minnesota大学数学与应用数学研究所做博士后;2009-2010年在美国Vanderbilt大学任助理教授;2010年至今在香港理工大学任教,现为香港理工大学数学系副教授。王治安教授主要研究领域包括趋化模型及生物数学模型的理论分析和数值模拟,已在包括SIAM J. Applied Mathematics、SIAM J. Mathematical Analysis、J. Differential Equations、J. Mathematical Biology、Nonlinearity等国际知名数学杂志发表学术论文60多篇,获得多项香港研究基金资助。